• Skip to main content
  • Skip to header right navigation
  • Skip to site footer
Farnam Street Logo

Farnam Street

Mastering the best of what other people have already figured out

  • Articles
  • Newsletter
  • Podcast
  • Books
  • Courses
  • Log In
  • Become a Member
TweetEmailLinkedInPrint
Uncategorized|Reading Time: 4 minutes

The Relativity of Wrong

“The basic trouble, you see, is that people think that “right” and “wrong” are absolute;
that everything that isn’t perfectly and completely right is totally and equally wrong.”
— Isaac Asimov

Isaac Asimov received a letter one day from a fellow who wanted to argue with one of Asimov’s essays.

Asimov used this short essay to highlight the nuances of being wrong.

It seemed that in one of my innumerable essays, I had expressed a certain gladness at living in a century in which we finally got the basis of the universe straight.

I didn’t go into detail in the matter, but what I meant was that we now know the basic rules governing the universe, together with the gravitational interrelationships of its gross components, as shown in the theory of relativity worked out between 1905 and 1916. We also know the basic rules governing the subatomic particles and their interrelationships, since these are very neatly described by the quantum theory worked out between 1900 and 1930. What’s more, we have found that the galaxies and clusters of galaxies are the basic units of the physical universe, as discovered between 1920 and 1930.

These are all twentieth-century discoveries, you see.

The young specialist in English Lit, having quoted me, went on to lecture me severely on the fact that in every century people have thought they understood the universe at last, and in every century they were proved to be wrong. It follows that the one thing we can say about our modern “knowledge” is that it is wrong. The young man then quoted with approval what Socrates had said on learning that the Delphic oracle had proclaimed him the wisest man in Greece. “If I am the wisest man,” said Socrates, “it is because I alone know that I know nothing.” the implication was that I was very foolish because I was under the impression I knew a great deal.

My answer to him was, “John, when people thought the earth was flat, they were wrong. When people thought the earth was spherical, they were wrong. But if you think that thinking the earth is spherical is just as wrong as thinking the earth is flat, then your view is wronger than both of them put together.”

The basic trouble, you see, is that people think that “right” and “wrong” are absolute; that everything that isn’t perfectly and completely right is totally and equally wrong.

However, I don’t think that’s so. It seems to me that right and wrong are fuzzy concepts, and I will devote this essay to an explanation of why I think so.

When my friend the English literature expert tells me that in every century scientists think they have worked out the universe and are always wrong, what I want to know is how wrong are they? Are they always wrong to the same degree?

Asimov’s friend, with the mental framing of absolute rights and wrongs, believed that all theories are wrong because they are eventually proven incorrect. But he ignored the degree of incorrectness. There is an important distinction to be made between the degree of wrongness.

What actually happens is that once scientists get hold of a good concept they gradually refine and extend it with greater and greater subtlety as their instruments of measurement improve. Theories are not so much wrong as incomplete.

This can be pointed out in many cases other than just the shape of the earth. Even when a new theory seems to represent a revolution, it usually arises out of small refinements. If something more than a small refinement were needed, then the old theory would never have endured.

Copernicus switched from an earth-centered planetary system to a sun-centered one. In doing so, he switched from something that was obvious to something that was apparently ridiculous. However, it was a matter of finding better ways of calculating the motion of the planets in the sky, and eventually the geocentric theory was just left behind. It was precisely because the old theory gave results that were fairly good by the measurement standards of the time that kept it in being so long.

Again, it is because the geological formations of the earth change so slowly and the living things upon it evolve so slowly that it seemed reasonable at first to suppose that there was no change and that the earth and life always existed as they do today. If that were so, it would make no difference whether the earth and life were billions of years old or thousands. Thousands were easier to grasp.

But when careful observation showed that the earth and life were changing at a rate that was very tiny but not zero, then it became clear that the earth and life had to be very old. Modern geology came into being, and so did the notion of biological evolution.

If the rate of change were more rapid, geology and evolution would have reached their modern state in ancient times. It is only because the difference between the rate of change in a static universe and the rate of change in an evolutionary one is that between zero and very nearly zero that the creationists can continue propagating their folly.

Since the refinements in theory grow smaller and smaller, even quite ancient theories must have been sufficiently right to allow advances to be made; advances that were not wiped out by subsequent refinements.

The Greeks introduced the notion of latitude and longitude, for instance, and made reasonable maps of the Mediterranean basin even without taking sphericity into account, and we still use latitude and longitude today.

The Sumerians were probably the first to establish the principle that planetary movements in the sky exhibit regularity and can be predicted, and they proceeded to work out ways of doing so even though they assumed the earth to be the center of the universe. Their measurements have been enormously refined but the principle remains.

Naturally, the theories we now have might be considered wrong in the simplistic sense of my English Lit correspondent, but in a much truer and subtler sense, they need only be considered incomplete.

Kathryn Schulz writes about something very similar:

Because so many scientific theories from bygone eras have turned out to be wrong, we must assume that most of today’s theories will eventually prove incorrect as well. And what goes for science goes in general. Politics, economics, technology, law, religion, medicine, child-rearing, education: no matter the domain of life, one generation’s verities so often become the next generation’s falsehoods that we might as well have a Pessimistic Meta-Induction from the History of Everything.

Good scientists understand this. They recognize that they are part of a long process of approximation. They know that they are constructing models rather than revealing reality…

Still curious? Read Kathryn Schulz’s explanation of how we feel when people disagree with us. Aslo check out why old knowledge isn’t necessarily a waste.

Read Next

Next Post:How Differential Gears WorkA simple explanation of how differential gears work and why they are necessary.

Discover What You’re Missing

Get the weekly email full of actionable ideas and insights you can use at work and home.


As seen on:

Forbes logo
New York Times logo
Wall Street Journal logo
The Economist logo
Financial Times logo
Farnam Street Logo

© 2023 Farnam Street Media Inc. All Rights Reserved.
Proudly powered by WordPress. Hosted by Pressable. See our Privacy Policy.

  • Speaking
  • Sponsorship
  • About
  • Support
  • Education

We’re Syrus Partners.
We buy amazing businesses.


Farnam Street participates in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising commissions by linking to Amazon.