Tag: Science

Our Yearning for Immortality: Alan Lightman on one of the most Profound Contradictions of Human Existence

Science does not reveal the meaning of our existence, but it does draw back some of the veils.

***

“Be not deceived,” Epictetus writes in The Discourses, “every animal is attached to nothing so much as to its own interest.” Few things are more in our nature than our yearning for permanence. And yet all evidence argues against us.

This profound human contradiction is what physicist Alan Lightman — the first person to receive dual appointments in sciences and humanities at MIT — explores in one of the essays in The Accidental Universe: The World You Thought You Knew.

Alan Lightman (Photo via MIT)
Alan Lightman (Photo via MIT)

The Accidental Universe

In the foreword to The Accidental Universe, Lightman tells a story of attending a lecture given by the Dalai Lama at the Massachusetts Institute of Technology. Among other things, the Dalai Lama spoke on the Buddhist concept of sunyata, which translates as “emptiness.” More specifically this doctrine means that objects in the physical universe are empty of inherent meaning — objects only receive meaning when we attach it to them with our thoughts and beliefs. This calls into question what is real.

As a scientist, I firmly believe that atoms and molecules are real (even if mostly empty space) and exist independently of our minds. On the other hand, I have witnessed firsthand how distressed I become when I experience anger or jealousy or insult, all emotional states manufactured by my own mind. The mind is certainly its own cosmos.

As Milton wrote in Paradise Lost, “It [the mind] can make a heaven of hell or a hell of heaven.”

In our constant search for meaning in this baffling and temporary existence, trapped as we are within our three pounds of neurons, it is sometimes hard to tell what is real. We often invent what isn’t there. Or ignore what is. We try to impose order, both in our minds and in our conceptions of external reality. We try to connect. We try to find truth. We dream and we hope. And underneath all of these strivings, we are haunted by the suspicion that what we see and understand of the world is only a tiny piece of the whole.

[…]

Science does not reveal the meaning of our existence, but it does draw back some of the veils.

We often think of the world as the totality of physical reality.

The word “universe” comes from the Latin unus, meaning “one,” combined with versus, which is the past participle of vertere, meaning “to turn.” Thus the original and literal meaning of “universe” was “everything turned into one.”

In the first essay “The Accidental Universe,” Lightman argues there is a possibility of multiple universes and multiple space-time continuums. But even if there is only a single universe, “there are many universes within our one universe, some visible and some not.” It all depends on your vantage point.

The challenge arises from explaining what we cannot see in a physical sense but can reason from deductions. We are like a pilot — relying our our incomplete mental instruments to guide us. We must believe what we cannot see and to a large extent we must believe what we cannot prove.

The Temporary Universe

In, The Temporary Universe, one of the best essays in the collection, Lightman sets out to explore our attachment to youth, immortality, and the familiar, despite their fleeting nature. The essay explores a profound contradiction of human existence — our longing for immortality.

I don’t know why we long so for permanence, why the fleeting nature of things so disturbs. With futility, we cling to the old wallet long after it has fallen apart. We visit and revisit the old neighborhood where we grew up, searching for the remembered grove of trees and the little fence. We clutch our old photographs. In our churches and synagogues and mosques, we pray to the everlasting and eternal. Yet, in every nook and cranny, nature screams at the top of her lungs that nothing lasts, that it is all passing away. All that we see around us, including our own bodies, is shifting and evaporating and one day will be gone. Where are the one billion people who lived and breathed in the year 1800, only two short centuries ago?

[…]

Physicists call it the second law of thermodynamics. It is also called the arrow of time. Oblivious to our human yearnings for permanence, the universe is relentlessly wearing down, falling apart, driving itself toward a condition of maximum disorder. It is a question of probabilities. You start from a situation of improbable order, like a deck of cards all arranged according to number and suit, or like a solar system with several planets orbiting nicely about a central star. Then you drop the deck of cards on the floor over and over again. You let other stars randomly whiz by your solar system, jostling it with their gravity. The cards become jumbled. The planets get picked off and go aimlessly wandering through space. Order has yielded to disorder. Repeated patterns to change. In the end, you cannot defeat the odds. You might beat the house for a while, but the universe has an infinite supply of time and can outlast any player.

 

We can’t live forever. Our lives are controlled by our genes in each cell. The raison d’être for most of these genes is to pass on instructions for how to build.

Some of these genes must be copied thousands of times; others are constantly subjected to random chemical storms and electrically unbalanced atoms, called free radicals, that disrupt other atoms. Disrupted atoms, with their electrons misplaced, cannot properly pull and tug on nearby atoms to form the intended bonds and architectural forms. In short, with time the genes get degraded. They become forks with missing tines. They cannot quite do their job. Muscles, for example. With age, muscles slacken and grow loose, lose mass and strength, can barely support our weight as we toddle across the room. And why must we suffer such indignities? Because our muscles, like all living tissue, must be repaired from time to time due to normal wear and tear. These repairs are made by the mechano growth factor hormone, which in turn is regulated by the IGF1 gene. When that gene inevitably loses some tines … Muscle to flab. Vigor to decrepitude. Dust to dust.

Most of our bodies are in a constant cycle of dying and being rebuilt to postpone the inevitable. The gut is perhaps the most fascinating example. As you can imagine it comes in contact with a lot of nasty stuff that damages tissues.

To stay healthy, the cells that line this organ are constantly being renewed. Cells just below the intestine’s surface divide every twelve to sixteen hours, and the whole intestine is refurbished every few days. I figure that by the time an unsuspecting person reaches the age of forty, the entire lining of her large intestine has been replaced several thousand times. Billions of cells have been shuffled each go-round. That makes trillions of cell divisions and whispered messages in the DNA to pass along to the next fellow in the chain. With such numbers, it would be nothing short of a miracle if no copying errors were made, no messages misheard, no foul-ups and instructions gone awry. Perhaps it would be better just to remain sitting and wait for the end. No, thank you.

Despite the preponderance of evidence against it, our culture strives for immortality and youth. We cling to a past that was but a moment in time in Heraclitus river— photographs, memories of our children, old wallets and shoes. And yet this yearning for youth and immortality, the “elixir of life,” connects us to every civilization that has graced the earth. But it’s not only our physical bodies that we want to remain young. We struggle against change — big and small.

Companies dread structural reorganization, even when it may be for the best, and have instituted whole departments and directives devoted to “change management” and the coddling of employees through tempestuous times. Stock markets plunge during periods of flux and uncertainty. “Better the devil you know than the devil you don’t.” Who among us clamors to replace the familiar and comfortable incandescent lightbulbs with the new, odd-looking, “energy-efficient” compact fluorescent lamps and light-emitting diodes? We resist throwing out our worn loafers, our thinning pullover sweaters, our childhood baseball gloves. A plumber friend of mine will not replace his twenty-year-old water pump pliers, even though they have been banged up and worn down over the years. Outdated monarchies are preserved all over the world. In the Catholic Church, the law of priestly celibacy has remained essentially unchanged since the Council of Trent in 1563.

I have a photograph of the coast near Pacifica, California. Due to irreversible erosion, California has been losing its coastline at the rate of eight inches per year. Not much, you say. But it adds up over time. Fifty years ago, a young woman in Pacifica could build her house a safe thirty feet from the edge of the bluff overlooking the ocean, with a beautiful maritime view. Five years went by. Ten years. No cause for concern. The edge of the bluff was still twenty-three feet away. And she loved her house. She couldn’t bear moving. Twenty years. Thirty. Forty. Now the bluff was only three feet away. Still she hoped that somehow, some way, the erosion would cease and she could remain in her home. She hoped that things would stay the same. In actual fact, she hoped for a repeal of the second law of thermodynamics, although she may not have described her desires that way. In the photograph I am looking at, a dozen houses on the coast of Pacifica perch right on the very edge of the cliff, like fragile matchboxes, with their undersides hanging over the precipice. In some, awnings and porches have already slid over the side and into the sea.

One constant over Earth’s 4.5-billion-year history is upheaval and change.

The primitive Earth had no oxygen in its atmosphere. Due to its molten interior, our planet was much hotter than it is now, and volcanoes spewed forth in large numbers. Driven by heat flow from the core of the Earth, the terrestrial crust shifted and moved. Huge landmasses splintered and glided about on deep tectonic plates. Then plants and photosynthesis leaked oxygen into the atmosphere. At certain periods, the changing gases in the air caused the planet to cool, ice covered the Earth, entire oceans may have frozen. Today, the Earth continues to change. Something like ten billion tons of carbon are cycled through plants and the atmosphere every few years— first absorbed by plants from the air in the form of carbon dioxide, then converted into sugars by photosynthesis, then released again into soil or air when the plant dies or is eaten. Wait around a hundred million years or so, and carbon atoms are recycled through rocks, soil, and oceans as well as plants.

Eta Carinae
The Doomed Star, Eta Carinae, may be about to explode. But no one knows when – it may be next year, it may be one million years from now. Eta Carinae’s mass – about 100 times greater than our Sun – makes it an excellent candidate for a full blown supernova. (Photo via NASA)

Shakespeare’s Julius Caesar says to Cassius:

“But I am constant as the northern star,
Of whose true-fix’d and resting quality
There is no fellow in the firmament.”

We can forgive his lack of knowledge on modern astrophysics or the second law of thermodynamics. The North Star, like all stars, including the sun, is slowing dying as they consume fuel. They too will eventually explode or fade into the universe. The only reminders of existence will be cold embers floating in space.

The Three Signs of Existence

Buddhists have long been aware of the evanescent nature of the world.

Anicca, or impermanence, they call it. In Buddhism, anicca is one of the three signs of existence, the others being dukkha, or suffering, and anatta, or non-selfhood. According to the Mahaparinibbana Sutta, when the Buddha passed away, the king deity Sakka uttered the following: “Impermanent are all component things. They arise and cease, that is their nature: They come into being and pass away.” We should not “attach” to things in this world, say the Buddhists, because all things are temporary and will soon pass away. All suffering, say the Buddhists, arises from attachment.

If only we could detach. “But,” Lightman argues, “even Buddhists believe in something akin to immortality. It is called Nirvana.”

A person reaches Nirvana after he or she has managed to leave behind all attachments and cravings, after countless trials and reincarnations, and finally achieved total enlightenment. The ultimate state of Nirvana is described by the Buddha as amaravati, meaning deathlessness. After a being has attained Nirvana, the reincarnations cease. Indeed, nearly every religion on Earth has celebrated the ideal of immortality. God is immortal. Our souls might be immortal.

Lightman argues that either we are delusional or nature is incomplete. “Either I am being emotional and vain in my wish for eternal life for myself …. or there is some realm of immortality that exists outside nature.”

If the first alternative is right, then I need to have a talk with myself and get over it. After all, there are other things I yearn for that are either not true or not good for my health. The human mind has a famous ability to create its own reality. If the second alternative is right, then it is nature that has been found wanting. Despite all the richness of the physical world— the majestic architecture of atoms, the rhythm of the tides, the luminescence of the galaxies— nature is missing something even more exquisite and grand: some immortal substance, which lies hidden from view. Such exquisite stuff could not be made from matter, because all matter is slave to the second law of thermodynamics. Perhaps this immortal thing that we wish for exists beyond time and space. Perhaps it is God. Perhaps it is what made the universe.

Of these two alternatives, I am inclined to the first. I cannot believe that nature could be so amiss. Although there is much that we do not understand about nature, the possibility that it is hiding a condition or substance so magnificent and utterly unlike everything else seems too preposterous for me to believe. So I am delusional. In my continual cravings for eternal youth and constancy, I am being sentimental. Perhaps with the proper training of my unruly mind and emotions, I could refrain from wanting things that cannot be. Perhaps I could accept the fact that in a few short years, my atoms will be scattered in wind and soil, my mind and thoughts gone, my pleasures and joys vanished, my “I-ness” dissolved in an infinite cavern of nothingness. But I cannot accept that fate even though I believe it to be true. I cannot force my mind to go to that dark place.

“A man can do what he wants,” said Schopenhauer, “but not want what he wants.”

If we are stuck with mortality can we find a beauty in this on its own? Is there something majestic in the brevity of life? Is there a value we can find from its fleeting and temporary duration?

I think of the night-blooming cereus, a plant that looks like a leathery weed most of the year. But for one night each summer its flower opens to reveal silky white petals, which encircle yellow lacelike threads, and another whole flower like a tiny sea anemone within the outer flower. By morning, the flower has shriveled. One night of the year, as delicate and fleeting as a life in the universe.

The Accidental Universe is an amazing read, balancing the laws of nature and first principles with a philosophical exploration of the world around us.

Gary Taubes on What Really Makes Us Fat

Nutrition, as a scientific field, is reminiscent of psychology in its infancy — before Skinner’s or Pavlov’s ideas had made a dent, before there was Piaget, Kahneman, Tversky, Munger; before we had a field called “evolutionary psychology.” Heck, before biology itself had really come to grips with Darwin’s ideas about evolution through natural selection. (That didn’t happen until the modern synthesis in the 1940s.)

There were theories of mind, theories of self, theories of everything, but nearly all of them were incomplete and contradictory explanations of human behavior. Most were unscientific, in the Popperian sense. They couldn’t be falsified, and they claimed to explain too much, even patently opposite behaviors. It would be a long time before we started to pull the threads together and come up with coherent explanations of why we do what we do.

A similar pattern emerges as we survey the field of nutrition today. The ground is not steady. The most widely accepted and promulgated advice of the last fifty years is under attack: Maybe a calorie is not a calorie. Maybe the simple advice of “Eat less, move more,” nice as it sounds, is too simple, and frankly, wrong. (Reminding one of the second half of Einstein’s dictum: As simple as possible, but not simpler.) Maybe saturated fat is actually good for us. Maybe *gasp* salt is actually good for us.

These aren’t slight modifications of a prior theory but a 180 degree turn. (The visual metaphor is more literal than it seems: It’s not hard to argue, with the new evidence, that the old FDA food pyramid we’re familiar with should literally be turned upside down.)

As of late, this heretical thinking has been promoted most heavily by scientific journalist Gary Taubes, with his many articles, and his books: Good Calories, Bad Calories, and the slimmer and more easily digestible (!) Why We Get Fat (And What to Do About It).

He and his intellectual partner, Peter Attia, call it the Alternative Hypothesis. It goes roughly as follows: We don’t gain weight and get modern diseases like heart disease, obesity, and hypertension because we eat too many calories or consume too much dietary fat, but because we are consuming carbohydrates, especially sugar and easily digestible starches, at a pace that nature never intended. The resulting insulin resistance is the main culprit.

In Why We Get Fat, Taubes lays out the modern epidemic:

Fifty years ago, one in every eight or nine Americans would have been officially considered obese, and today it’s one in every three. Two in three are now considered overweight, which means they’re carrying around more weight than the public-health authorities deem to be healthy.

This, in the face of a rise in recreational exercise, gym-going, health-consciousness, and food pyramids. (Not to mention fast food, increasingly sedentary lifestyles, and so on — all the things you’ve heard before. Taubes thinks those are red herrings, by the way.)

The Causality Problem

The premise of the book is relatively simple: Trying to explain the explosion of obesity, hypertension, and heart disease by focusing on overeating or under-exercising (consuming more calories than we’re using) is missing the boat. It’s explaining something causally by simply describing it. Of course we’re storing more energy than expended. Why?

Step-by-step, detective-like, Taubes explores the current hypotheses and finds them wanting:

…(I will argue) that it is absurd to think about obesity as caused by overeating, because anything that makes people grow–whether in height or weight, in muscle or fat–will make them overeat. Children, for example, don’t grow taller because they eat voraciously and consume more calories than they expend. They eat so much-overeat–because they’re growing. They need to take in more calories than they expend.

We want to know what causes the overeating relative to energy expenditure. Why would any animal or human be driven to store more fat than they needed to function? Wild animals do not carry excess fat unless it has a useful physiological mechanism. (Whales keeping warm, squirrels preparing for winter, etc.)

Many have tried to explain this in psychological terms: Either we’re being manipulated into over-eating or we’re too weak to resist the temptations of the modern age. Today’s food is just too damn yummy.

Taubes thinks this is the wrong way to approach the problem. What we really need to understand is the regulation of our fat tissue itself and why it would go awry. He calls it Adiposity 101:

The message of eighty years of research on obese animals is simple and unconditional and worth restating: obesity does not come about because gluttony and sloth make it so; only a change in the regulation of fat tissue make a lean animal obese.

The regulation of fat tissue is a bit different than we often imagine. Fat tissue is not like a savings account we add to and then pull from at an indeterminate time later. It’s more like the battery in a solar energy system: It stores excess energy when it is available, then releases it later when the energy isn’t available, at regular periodic intervals.

We’re constantly storing and releasing fat: During every meal, the body mobilizes its resources to store energy not immediately needed. Later, when we’re between meals or sleeping, the body breaks down the stored energy and uses it to fuel the cells. This is how a normally functioning body works. The principle of homeostasis tells us that the body wants to stay in balance: We should be storing only as much fat as needed to survive.

The problem comes when the body isn’t functioning normally, and the balance is lost. We tend to think this happens because we’re overeating. But what if that’s the effect, not the cause? It’s counter-intuitive, but so is the fact that the sun doesn’t revolve around the earth.

The culprit is resistance to insulin, a natural hormone which (among other things) encourages fat storage and discourages release of fat stores while it’s circulating.

Remember, we depend on fatty acids for fuel in the hours after a meal, as blood sugar levels are dropping to their pre-meal level. But insulin suppresses the flow of fatty acid from the fat cells; it tells the other cells in the body to burn carbohydrates. So, as blood sugar returns to a healthy level, we need a replacement fuel supply.

(But) if insulin remains elevated, the fat isn’t available…as a result, the cells find themselves starved for fuel, and we quite literally feel their hunger. Either we eat sooner than we otherwise would have or we eat more when we do eat, or both. As I said earlier, anything that makes us fatter will make us overeat in the process. That’s what insulin does.

Taubes thinks we’ve gotten the causality backwards: Overeating doesn’t make us fat any more than overeating makes young children get taller; getting fat causes us to overeat. Our cells are literally being starved for energy by the selfish fat tissue, growing on its own accord in a tumor-like fashion driven by an abundance of circulating insulin. A isn’t causing B…B is causing A. This error has been the source of bad dieting advice.

Resistance is Futile 

How do we become insulin resistant in the first place? Simple: We over-consume easily digestible carbohydrates, which causes heavy and constant insulin response in our bloodstream. This level of carbohydrate consumption was not available to our ancestors year-round, making it a modern problem. (One objection that’s been raised here is that our ancestors simply didn’t live long enough to contract modern disease. I hypothesize that there’s an error being made: Many earlier humans lived perfectly long lives, certainly long enough to get obese and hypertensive, but one major reason average life expectancy was low is because child mortality was so high.)

In any case, our cells eventually become resistant to insulin, and as more and more of the hormone is released in response–to keep our blood sugar down–our fat remains stored away tightly in the form of triglycerides (tri = 3 fatty acids, glycerol = a binding molecule; how our body stores fat for later).

The indicators for diseases we now associate with obesity, including hypertension, diabetes, and stroke, have now largely been lumped under the term Metabolic Syndrome. Because these indicators–high triglycerides, high blood pressure, low HDL cholesterol among them–are often associated with an expanding waistline, many have been led to believe that obesity causes the other associated diseases.

Not so, according to Taubes:

The simplest way to look at all these associations, between obesity, heart diseases, type 2 diabetes, metabolic syndrome, cancer, and Alzheimer’s (not to mention the other conditions that also associate with obesity and diabetes, such as gout, asthma, and fatty liver disease), is that what makes us fat–the quality and quantity of carbohydrates we consume–also makes us sick.

The insulin resistance is causing obesity and the other problems. It isn’t that A causes B, it’s that C is causing A and B. Another important logical flaw.

What Now?

The implications are fairly obvious, from a diet perspective. We should cut our consumption of carbohydrates drastically, especially those that digest into the blood stream most easily and cause the most drastic insulin response.

Taubes smartly delimits himself from going beyond that advice, though:

It would be nice if we could improve on the foods to eat, foods to avoid, foods to eat in moderation. Unfortunately, this can’t be done without guessing. The kind of long-term clinical trials have not been undertaken that would tell us more about what constitutes the healthiest variation of a diet in which the fattening carbohydrates have already been removed.

Taubes admits that the right science must be done in order to prove that he’s right:

Our conventional dietary wisdom, as I’ve described in my books, is based on science that was simply not adequate to the task of establishing reliable knowledge — poorly-controlled human experiments, observational studies incapable of establishing cause and effect, and animal studies that may or may not say anything meaningful about what happens in humans.

That’s why he and Peter Attia created the Nutritional Science Initiative, or NuSi, with the idea of pulling together a range of scientists and researchers to perform more precise experiments. The goal is understanding whether a calorie is really a calorie, whether carbohydrate-restrictive diets are more effective (and why) and a host of other pertinent questions. Only good data will convince the public (and the health officials it turns to for advice) that things need to change. Their work is underway as we write.

Given the resistance most people have to admitting they were wrong, it’s an uphill battle.

***

What makes Taubes an effective thinker, and writer, is that he’s pulling from diverse fields in his quest to solve the obesity problem. While nutritionists typically silo themselves, to a certain extent, in their own field, with some influence from psychology to explain why obese people tend to overeat, Taubes instead pulls from anthropology, biochemistry, endocrinology, epidemiology, and the field of nutrition itself. By asking the right questions of the right people, he gets better answers. He isn’t afraid to step on toes. He also uses careful induction, sorting point by point the problems with competing hypotheses. This is something that reminds us of all great thinkers, from Newton to Darwin to Holmes to Munger.

Nutrition is a field changing in real-time: It needs precise thinkers with a strong penchant for self-criticism, truth-seeking, contrarianism, and boundary-crossing. Whether or not Taubes’ Alternative Hypothesis ends up being the correct one, the job needs to be done right. Observational studies, on which most nutritional recommendations are based, are not science: They are hypothesis-generators. Correlation generators. Figuring out causality is a tougher task.

The good news is that this core problem is solvable, and we suspect, like psychology, the field will come together in time.

E.O. Wilson on Becoming a Great Scientist

The biologist E.O. Wilson, now of Harvard University, made his first and largest splash by releasing his book Sociobiology: The New Synthesis, which made the controversial claim (at the time) that human nature has a strong biological basis.

His work brought into public consciousness the fields of sociobiology and evolutionary psychology, where Steven Pinker, Robert Trivers, and others have made huge strides in contributing to our understanding of why we are who we are.

Wilson’s newest book is a slim volume called Letters to a Young Scientist. I picked it up off the bookshelf blindly, and after reading it, I was struck by its unusual tone: It’s part memoir, part advice journal, part pop-science (in the good, “effectively explains things to lesser mortals” way, not the derogatory way), which means the book works on multiple levels.

Science Isn’t Just Lab Coats and Blackboards 

One of the triumphs of the book is Wilson’s ability to explain to a non-scientist (or, as he intended, a future scientist) the way science is actually conducted, and what it takes to be a good scientist. Some of these explanations are counterintuitive to our popular understanding:

Most of the stereotypical photographs of scientists studying rows of equations written on blackboards are instructors explaining discoveries already made. Real progress comes in the field writing notes, at the office amid a litter of doodle paper, in the corridor struggling to explain something to a friend, at lunchtime, eating alone, or in a garden while walking. To have a eureka moment requires hard work. And focus. A distinguished researcher once commented to me that a real scientist is someone who can think about a subject while talking to his or her spouse about something else.

Because of the need for extreme focus over a long period (or as William Deresiewicz put it — “concentrating and sticking to the problem“), there’s a lot of grinding in scientific work. But Wilson describes it as a treasure hunt:

To reach and stay at the frontier (of scientific thought), a strong work ethic is absolutely essential. There must be an ability to pass long hours in study and research with pleasure even though some of the effort will inevitably lead to dead ends. Such is the price of admission to the first rank of research scientists. They are like treasure hunters of older times in an uncharted land, these elite men and women.

Echoing Charlie Munger, Wilson posits that outside of the day-to-day work required to become an expert, big opportunities in science and life must be seized:

Once deeply engaged, a steady stream of small discoveries is guaranteed. But stay alert for the main chance that lies to the side. There will always be the possibility of a major strike, some wholly unexpected find, some little detail that catches your peripheral attention that might very well, if followed, enlarge or even transform the subject you have chosen. If you sense such a possibility, seize it. In science, gold fever is a good thing.

Think Like a Poet

Later, Wilson expands on this idea of deep expertise combined with imagination and playfulness being the essential features of great scientific thought. This idea of deep focus plus playfulness leads to new connections and innovative thought, an idea we’ve come across before as combinatorial creativity.

One way to cultivate this, says Wilson, is to think like a poet.

Make it a practice to indulge in fantasy about science. Make it more than just an occasional exercise. Daydream a lot. Make talking to yourself silently a relaxing pastime. Give lectures to yourself about important topics you need to understand. Talk with others of like mind. By their dreams you shall know them…The ideal scientist thinks like a poet and only later works as a bookkeeper. Keep in mind that innovators in both literature and science are basically dreamers and storytellers.

Use Ignorance 

Echoing thoughts by Richard Feynman, Wilson says we need to spot and harness our ignorance to make scientific progress:

To make important discoveries anywhere in science, it is necessary not only to acquire a broad knowledge of the subject that interests you, but also the ability to spot blank spaces in that knowledge. Deep ignorance, when properly handled, is also a superb opportunity…To search for unasked questions, plus questions to put to already acquired but unsought answers, it is vital to give full play to the imagination. That is the way to create truly original science.

No Genius Needed

One problem that makes young people afraid of getting into a scientific field, even though they are interested in making discoveries about the world, is they feel they aren’t that good at math, or even that smart. But Wilson tackles both of these.

If your level of mathematical competence is low, plan on raising it, but meanwhile know that you can do outstanding work with what you have. Such is markedly true in fields built largely upon the amassing of data, including, for example, taxonomy, ecology, biogeography, geology, and archaeology. At the same time, think twice about specializing in fields that require a close alternation of experiment and quantitative analysis. These include the greater part of physics and chemistry, as well as a few specialties within molecular biology. Learn the basics of improving your mathematical literacy as you go along, but if you remain weak in mathematics, seek happiness elsewhere among the vast array of scientific specialties.

Wilson says he himself only started learning calculus at the age of 32 when he was already a well known and practicing scientist, and although it wasn’t easy, he did it. He points out that his IQ was measured at 123, and he knows two Nobel prize winners who scored in the 120s. Charles Darwin was roughly 130. It doesn’t take genius to make scientific progress:

Work accomplished on the frontier defines genius, not just getting there. In fact, both accomplishments along the frontier and the final eureka moment are achieved more by entrepreneurship and hard work than by native intelligence. This is so much the case that in most fields, most of the time, extreme brightness may be a detriment…

Passion Above All

When it comes to choosing what to study and what to pursue, Wilson makes a familiar recommendation: go where the competition is low. (This principle works in much of life.)

You have heard the military rule for the summoning of troops to the battlefield: “March to the sound of the guns.” In science the opposite is the one for you…

March away from the sound of the guns. Observe the fray at a distance, and while you are at it, consider making your own fray.

And above all, you need to love what you study. If you start with that principle, your odds of success are best:

It is quite simple: put passion ahead of training. Feel out in any way you can what you most want to do in science, or technology, or some other science-related profession. Obey that passion as long as it lasts. Feed it with the knowledge the mind needs to grow. Sample other subjects, acquire a general education in science, and be smart enough to switch to a greater love if one appears….Decision and hard work based on enduring passion will never fail you.

Check out Letters to a Young Scientist – you can read it in an afternoon but you’ll probably think about it for a lot longer.

Richard Feynman on Refusing an Honorary Degree, Being Driven, and Understanding his Circle of Competence

Perfectly Reasonable Deviations From the Beaten Track is a wonderful collection of letters written to and from the physicist and professor Richard Feynmanchampion of understanding, explainer, an exemplar of curiosity, lover of beauty, knowledge seeker, asker of questions—during his life and career in science.

The book explores the timeless qualities that we cherish in Feynman. Let’s dive a little deeper.

Driven

Feynman was precocious; it’s clear that even early in his career, he knew he had the intelligence and drive to make an impact in science. At the age of 24 he had the foresight to mention, in a letter to his parents defying their wish that he not marry a dying woman (his fiancé Arlene had tuberculosis, a deadly diagnosis in those days), that:

I have other desires and aims in the world. One of them is to contribute to physics as much as I can. This, in my mind, is of even more importance than my love for Arlene.

He worked hard at that goal, and he showed signs of enjoying the process. In letters he wrote during his time working in academia and on the atomic bomb, Feynman writes that:

I’m hitting some mathematical difficulties which I will either surmount, walk around, or go a different way—all of which consumes all of my time—but I like to do (it) very much and am very happy indeed. I have never thought so much so steadily about one problem—so if I get nowhere I really will be very disturbed—However, I have gotten somewhere, quite far—to Prof. Wheeler’s satisfaction. However the problem is not at completion, although I’m just beginning to see how far it is to the end and how we might get there (although aforementioned mathematical difficulties loom ahead)—SOME FUN!

This week has been unusual. There is an especially important problem to be worked out on the project, and it’s a lot of fun so I am working quite hard on it. I get up at about 10:30 AM after a good night’s rest, and go to work until 12:30 or 1 AM the next morning when I go back to bed. Naturally I take off about 2 hrs for my two meals. I don’t eat any breakfast, but I eat a midnight snack before I go to bed. It’s been that way for 4 or 5 days.

We see this frequently in genius-level contributors doing intensive work. It is not so much that they find the work easy, but they do find pleasure in the struggle. (There is actually another book about Feynman called “The Pleasure in Finding Things Out.”) Warren Buffett has said many times that he taps dances to work every day, and those who have spent time with him have corroborated the story. It’s not a lie. Charlie Munger has mentioned that one of the main reasons for Berkshire’s success is the fact that they enjoy the work.

Feynman is an interesting character though; for a super-genius scientist, he comes off as unusually romantic with passages like the following one, in a letter to his then-wife, Arlene:

There is a third thing you will be interested in. I love you. You are a strong and beautiful woman. You are not always as strong as other times but it rises and falls like the flow of a mountain stream. I feel I am a reservoir for your strength — without you I would be empty and weak like I was before I knew you — but your moments of strength make me strong and thus I am able to comfort you with your strength when your steam is low.

And long-time readers will remember the heart-breaking letter he wrote after she had passed away.

Honor and Honesty 

As the book rolls along and Feynman gets older and more famous, he is regularly asked to be honored. Generally, as most who have studied Feynman would know, he showed considerable discomfort with the process, which valued exclusivity and puffery over knowledge. One letter is typical of the middle-aged Feynman:

Dear George,

Yours is the first honorary degree that I have ben offered, and I thank you for considering me for such an honor.

However, I remember the work I did to get a real degree at Princeton and the guys on the same platform receiving honorary degrees without work—and felt an “honorary degree” was a debasement of the idea of a “degree which confirms certain work has been accomplished.” It is like giving an “honorary electrician’s license.” I swore then that if by chance I was ever offered one, I would not accept it.

Now at last (twenty-five years later) you have given me a chance to carry out my vow.

So thank you, but I do not wish to accept the honorary degrees you offered.

Sincerely yours,

Richard P. Feynman

He also offers his usual wit upon resigning from the National Academy of Sciences:

Dear Prof. Handler:

My request for resignation from the National Academy of Sciences is based entirely on personal psychological quirks. It represents in no way any implied or explicit criticism of the Academy, other than those characteristics that flow from the fact that most of the membership consider their installation as a significant honor.

Sincerely yours,
Richard P. Feynman

In fact, Feynman was constantly displaying his tendency towards intellectual honesty, whenever possible. He understood his circle of competence. Several letters scattered throughout his life show him essentially throwing up his hands and saying “I don’t know,” and he took pride in doing so. His general philosophy towards ignorance and learning was summed up in a statement he made in 1963 that “I feel a responsibility as a scientist who knows the great value of a satisfactory philosophy of ignorance, and the progress made possible by such a philosophy…that doubt is not to be feared, but it is to be welcomed…”

The following letter was typical of his lack of intellectual arrogance, this one coming in response to something he’d written about teaching kids math in his younger years:

Dear Mrs. Cochran:

As I get more experience I realize that I know nothing whatsoever as to how to teach children arithmetic. I did write some things before I reached my present state of wisdom. Perhaps the references you heard came from the article which I enclose.

At present, however, I do not know whether I agree with my past self or not.

Wishy-washy,
Richard P. Feynman

He does it again here, opening a reply to a highly critical letter about a TV appearance with the following:

Dear Mr. Rogers,

Thank you for your letter about my KNXT interview. You are quite right that I am very ignorant about smog and many other things, including the use of Finest English.

I won the Nobel Prize for work I did in physics trying to uncover the laws of nature. The only thing I really know very much about are these laws….

***

In the end, Feynman’s greatest strength, outside of his immense scientific talent, was his basic philosophy on life. In 1954, Feynman wrote with tenderness to his mother:

Wealth is not happiness nor is swimming pools and villas. Nor is great work alone reward, or fame. Foreign places visited themselves give nothing. It is only you who bring to the places your heart, or in your great work feeling, or in your large house place. If you do this there is happiness.

Check out Reasonable Deviations from the Beaten Track, and learn more about life and learning from the best.

Cargo Cult Science: Richard Feynman On Believing What Isn’t True

“The first principle is that you must not fool yourself—and you are the easiest person to fool.”

— Richard Feynman

Richard Feynman (1918-1988) has long been one of my favorites — for both his wisdom and heart.

Reproduced below you can find the entirety of his 1974 commencement address at Caltech entitled Cargo Cult Science.

The entire speech requires about 10 minutes to read, which is time well invested if you ask me. If you’re pressed for time, however, there are two sections I wish to draw to your attention.

In the South Seas there is a Cargo Cult of people. During the war they saw airplanes land with lots of good materials, and they want the same thing to happen now. So they’ve arranged to make things like runways, to put fires along the sides of the runways, to make a wooden hut for a man to sit in, with two wooden pieces on his head like headphones and bars of bamboo sticking out like antennas—he’s the controller—and they wait for the airplanes to land. They’re doing everything right. The form is perfect. It looks exactly the way it looked before. But it doesn’t work. No airplanes land. So I call these things Cargo Cult Science, because they follow all the apparent precepts and forms of scientific investigation, but they’re missing something essential, because the planes don’t land.

You’re probably chuckling at this point. Yet many of us are no better. This is all around us. Thinking is hard and we fool ourselves, in part, because it’s easy. That’s Feynman’s point.

The first principle is that you must not fool yourself—and you are the easiest person to fool. So you have to be very careful about that. After you’ve not fooled yourself, it’s easy not to fool other scientists. You just have to be honest in a conventional way after that.

Your job is to find the current cargo cults.

When we start a project without determining what success looks like … when we mistake the map for the territory … when we look at outcomes without looking at process … when we blindly copy what others have done …. when we confuse correlation and causation we find ourselves on the runway.

***

Cargo Cult Science

During the Middle Ages there were all kinds of crazy ideas, such as that a piece of rhinoceros horn would increase potency. (Another crazy idea of the Middle Ages is these hats we have on today—which is too loose in my case.) Then a method was discovered for separating the ideas—which was to try one to see if it worked, and if it didn’t work, to eliminate it. This method became organized, of course, into science. And it developed very well, so that we are now in the scientific age. It is such a scientific age, in fact, that we have difficulty in understanding how­ witch doctors could ever have existed, when nothing that they proposed ever really worked—or very little of it did.

But even today I meet lots of people who sooner or later get me into a conversation about UFOs, or astrology, or some form of mysticism, expanded consciousness, new types of awareness, ESP, and so forth. And I’ve concluded that it’s not a scientific world.

Most people believe so many wonderful things that I decided to investigate why they did. And what has been referred to as my curiosity for investigation has landed me in a difficulty where I found so much junk to talk about that I can’t do it in this talk. I’m overwhelmed. First I started out by investigating various ideas of mysticism, and mystic experiences. I went into isolation tanks (they’re dark and quiet and you float in Epsom salts) and got many hours of hallucinations, so I know something about that. Then I went to Esalen, which is a hotbed of this kind of thought (it’s a wonderful place; you should go visit there). Then I became overwhelmed. I didn’t realize how much there was.

I was sitting, for example, in a hot bath and there’s another guy and a girl in the bath. He says to the girl, “I’m learning massage and I wonder if I could practice on you?” She says OK, so she gets up on a table and he starts off on her foot—working on her big toe and pushing it around. Then he turns to what is apparently his instructor, and says, “I feel a kind of dent. Is that the pituitary?” And she says, “No, that’s not the way it feels.” I say, “You’re a hell of a long way from the pituitary, man.” And they both looked at me—I had blown my cover, you see—and she said, “It’s reflexology.” So I closed my eyes and appeared to be meditating.

That’s just an example of the kind of things that overwhelm me. I also looked into extrasensory perception and PSI phenomena, and the latest craze there was Uri Geller, a man who is supposed to be able to bend keys by rubbing them with his finger. So went to his hotel room, on his invitation, to see a demonstration of both mind reading and bending keys. He didn’t do any mind reading that succeeded; nobody can read my mind, I guess. And my boy held a key and Geller rubbed it, and nothing happened. Then he told us it works better under water, and so you can picture all of us standing in the bathroom with the water turned on and the key under it, and him rubbing the key with his finger. Nothing happened. So I was unable to investigate that phenomenon.

But then I began to think, what else is there that we believe? (And I thought then about the witch doctors, and how easy it would have been to check on them by noticing that nothing really worked.) So I found things that even more people believe, such as that we have some knowledge of how to educate. There are big schools of reading methods and mathematics methods, and so forth, but if you notice, you’ll see the reading scores keep going down—or hardly going up—in spite of the fact that we continually use these same people to improve the methods. There’s a witch doctor remedy that doesn’t work. It ought to be looked into: how do they know that their method should work? Another example is how to treat criminals. We obviously have made no progress—lots of theory, but no progress—in decreasing the amount of crime by the method that we use to handle criminals.

Yet these things are said to be scientific. We study them. And I think ordinary people with commonsense ideas are intimidated by this pseudoscience. A teacher who has some good idea of how to teach her children to read is forced by the school system to do it some other way—or is even fooled by the school system into thinking that her method is not necessarily a good one. Or a parent of bad boys, after disciplining them in one way or another, feels guilty for the rest of her life because she didn’t do “the right thing,” according to the experts.

So we really ought to look into theories that don’t work, and science that isn’t science.

I tried to find a principle for discovering more of these kinds of things, and came up with the following system. Any time you find yourself in a conversation at a cocktail party—in which you do not feel uncomfortable that the hostess might come around and say, “Why are you fellows talking shop?’’ or that your wife will come around and say, “Why are you flirting again?”—then you can be sure you are talking about something about which nobody knows anything.

Using this method, I discovered a few more topics that I had forgotten—among them the efficacy of various forms of psychotherapy. So I began to investigate through the library, and so on, and I have so much to tell you that I can’t do it at all. I will have to limit myself to just a few little things. I’ll concentrate on the things more people believe in. Maybe I will give a series of speeches next year on all these subjects. It will take a long time.

I think the educational and psychological studies I mentioned are examples of what I would like to call Cargo Cult Science. In the South Seas there is a Cargo Cult of people. During the war they saw airplanes land with lots of good materials, and they want the same thing to happen now. So they’ve arranged to make things like runways, to put fires along the sides of the runways, to make a wooden hut for a man to sit in, with two wooden pieces on his head like headphones and bars of bamboo sticking out like antennas—he’s the controller—and they wait for the airplanes to land. They’re doing everything right. The form is perfect. It looks exactly the way it looked before. But it doesn’t work. No airplanes land. So I call these things Cargo Cult Science, because they follow all the apparent precepts and forms of scientific investigation, but they’re missing something essential, because the planes don’t land.

Now it behooves me, of course, to tell you what they’re missing. But it would be just about as difficult to explain to the South Sea Islanders how they have to arrange things so that they get some wealth in their system. It is not something simple like telling them how to improve the shapes of the earphones. But there is one feature I notice that is generally missing in Cargo Cult Science. That is the idea that we all hope you have learned in studying science in school—we never explicitly say what this is, but just hope that you catch on by all the examples of scientific investigation. It is interesting, therefore, to bring it out now and speak of it explicitly. It’s a kind of scientific integrity, a principle of scientific thought that corresponds to a kind of utter honesty—a kind of leaning over backwards. For example, if you’re doing an experiment, you should report everything that you think might make it invalid—not only what you think is right about it: other causes that could possibly explain your results; and things you thought of that you’ve eliminated by some other experiment, and how they worked—to make sure the other fellow can tell they have been eliminated.

Details that could throw doubt on your interpretation must be given, if you know them. You must do the best you can—if you know anything at all wrong, or possibly wrong—to explain it. If you make a theory, for example, and advertise it, or put it out, then you must also put down all the facts that disagree with it, as well as those that agree with it. There is also a more subtle problem. When you have put a lot of ideas together to make an elaborate theory, you want to make sure, when explaining what it fits, that those things it fits are not just the things that gave you the idea for the theory; but that the finished theory makes something else come out right, in addition.

In summary, the idea is to try to give all of the information to help others to judge the value of your contribution; not just the information that leads to judgment in one particular direction or another.

The easiest way to explain this idea is to contrast it, for example, with advertising. Last night I heard that Wesson Oil doesn’t soak through food. Well, that’s true. It’s not dishonest; but the thing I’m talking about is not just a matter of not being dishonest, it’s a matter of scientific integrity, which is another level. The fact that should be added to that advertising statement is that no oils soak through food, if operated at a certain temperature. If operated at another temperature, they all will—including Wesson Oil. So it’s the implication which has been conveyed, not the fact, which is true, and the difference is what we have to deal with.

We’ve learned from experience that the truth will out. Other experimenters will repeat your experiment and find out whether you were wrong or right. Nature’s phenomena will agree or they’ll disagree with your theory. And, although you may gain some temporary fame and excitement, you will not gain a good reputation as a scientist if you haven’t tried to be very careful in this kind of work. And it’s this type of integrity, this kind of care not to fool yourself, that is missing to a large extent in much of the research in Cargo Cult Science.

A great deal of their difficulty is, of course, the difficulty of the subject and the inapplicability of the scientific method to the subject. Nevertheless, it should be remarked that this is not the only difficulty. That’s why the planes don’t land—but they don’t land.

We have learned a lot from experience about how to handle some of the ways we fool ourselves. One example: Millikan measured the charge on an electron by an experiment with falling oil drops and got an answer which we now know not to be quite right. It’s a little bit off, because he had the incorrect value for the viscosity of air. It’s interesting to look at the history of measurements of the charge of the electron, after Millikan. If you plot them as a function of time, you find that one is a little bigger than Millikan’s, and the next one’s a little bit bigger than that, and the next one’s a little bit bigger than that, until finally they settle down to a number which is higher.

Why didn’t they discover that the new number was higher right away? It’s a thing that scientists are ashamed of—this history—because it’s apparent that people did things like this: When they got a number that was too high above Millikan’s, they thought something must be wrong—and they would look for and find a reason why something might be wrong. When they got a number closer to Millikan’s value they didn’t look so hard. And so they eliminated the numbers that were too far off, and did other things like that. We’ve learned those tricks nowadays, and now we don’t have that kind of a disease.

But this long history of learning how to not fool ourselves—of having utter scientific integrity—is, I’m sorry to say, something that we haven’t specifically included in any particular course that I know of. We just hope you’ve caught on by osmosis.

The first principle is that you must not fool yourself—and you are the easiest person to fool. So you have to be very careful about that. After you’ve not fooled yourself, it’s easy not to fool other scientists. You just have to be honest in a conventional way after that.

I would like to add something that’s not essential to the science, but something I kind of believe, which is that you should not fool the layman when you’re talking as a scientist. I’m not trying to tell you what to do about cheating on your wife, or fooling your girlfriend, or something like that, when you’re not trying to be a scientist, but just trying to be an ordinary human being. We’ll leave those problems up to you and your rabbi. I’m talking about a specific, extra type of integrity that is not lying, but bending over backwards to show how you’re maybe wrong, that you ought to do when acting as a scientist. And this is our responsibility as scientists, certainly to other scientists, and I think to laymen.

For example, I was a little surprised when I was talking to a friend who was going to go on the radio. He does work on cosmology and astronomy, and he wondered how he would explain what the applications of this work were. “Well,” I said, “there aren’t any.” He said, “Yes, but then we won’t get support for more research of this kind.” I think that’s kind of dishonest. If you’re representing yourself as a scientist, then you should explain to the layman what you’re doing—and if they don’t want to support you under those circumstances, then that’s their decision.

One example of the principle is this: If you’ve made up your mind to test a theory, or you want to explain some idea, you should always decide to publish it whichever way it comes out. If we only publish results of a certain kind, we can make the argument look good. We must publish both kinds of result. For example—let’s take advertising again—suppose some particular cigarette has some particular property, like low nicotine. It’s published widely by the company that this means it is good for you—they don’t say, for instance, that the tars are a different proportion, or that something else is the matter with the cigarette. In other words, publication probability depends upon the answer. That should not be done.

I say that’s also important in giving certain types of government advice. Supposing a senator asked you for advice about whether drilling a hole should be done in his state; and you decide it would be better in some other state. If you don’t publish such a result, it seems to me you’re not giving scientific advice. You’re being used. If your answer happens to come out in the direction the government or the politicians like, they can use it as an argument in their favor; if it comes out the other way, they don’t publish it at all. That’s not giving scientific advice.

Other kinds of errors are more characteristic of poor science. When I was at Cornell. I often talked to the people in the psychology department. One of the students told me she wanted to do an experiment that went something like this—I don’t remember it in detail, but it had been found by others that under certain circumstances, X, rats did something, A. She was curious as to whether, if she changed the circumstances to Y, they would still do, A. So her proposal was to do the experiment under circumstances Y and see if they still did A.

I explained to her that it was necessary first to repeat in her laboratory the experiment of the other person—to do it under condition X to see if she could also get result A—and then change to Y and see if A changed. Then she would know that the real difference was the thing she thought she had under control.

She was very delighted with this new idea, and went to her professor. And his reply was, no, you cannot do that, because the experiment has already been done and you would be wasting time. This was in about 1935 or so, and it seems to have been the general policy then to not try to repeat psychological experiments, but only to change the conditions and see what happens.

Nowadays there’s a certain danger of the same thing happening, even in the famous field of physics. I was shocked to hear of an experiment done at the big accelerator at the National Accelerator Laboratory, where a person used deuterium. In order to compare his heavy hydrogen results to what might happen to light hydrogen he had to use data from someone else’s experiment on light hydrogen, which was done on different apparatus. When asked he said it was because he couldn’t get time on the program (because there’s so little time and it’s such expensive apparatus) to do the experiment with light hydrogen on this apparatus because there wouldn’t be any new result. And so the men in charge of programs at NAL are so anxious for new results, in order to get more money to keep the thing going for public relations purposes, they are destroying—possibly—the value of the experiments themselves, which is the whole purpose of the thing. It is often hard for the experimenters there to complete their work as their scientific integrity demands.

All experiments in psychology are not of this type, however. For example, there have been many experiments running rats through all kinds of mazes, and so on—with little clear result. But in 1937 a man named Young did a very interesting one. He had a long corridor with doors all along one side where the rats came in, and doors along the other side where the food was. He wanted to see if he could train the rats to go in at the third door down from wherever he started them off. No. The rats went immediately to the door where the food had been the time before.

The question was, how did the rats know, because the corridor was so beautifully built and so uniform, that this was the same door as before? Obviously there was something about the door that was different from the other doors. So he painted the doors very carefully, arranging the textures on the faces of the doors exactly the same. Still the rats could tell. Then he thought maybe the rats were smelling the food, so he used chemicals to change the smell after each run. Still the rats could tell. Then he realized the rats might be able to tell by seeing the lights and the arrangement in the laboratory like any commonsense person. So he covered the corridor, and, still the rats could tell.

He finally found that they could tell by the way the floor sounded when they ran over it. And he could only fix that by putting his corridor in sand. So he covered one after another of all possible clues and finally was able to fool the rats so that they had to learn to go in the third door. If he relaxed any of his conditions, the rats could tell.

Now, from a scientific standpoint, that is an A‑Number‑l experiment. That is the experiment that makes rat‑running experiments sensible, because it uncovers the clues that the rat is really using—not what you think it’s using. And that is the experiment that tells exactly what conditions you have to use in order to be careful and control everything in an experiment with rat‑running.

I looked into the subsequent history of this research. The subsequent experiment, and the one after that, never referred to Mr. Young. They never used any of his criteria of putting the corridor on sand, or being very careful. They just went right on running rats in the same old way, and paid no attention to the great discoveries of Mr. Young, and his papers are not referred to, because he didn’t discover anything about the rats. In fact, he discovered all the things you have to do to discover something about rats. But not paying attention to experiments like that is a characteristic of Cargo Cult Science.

Another example is the ESP experiments of Mr. Rhine, and other people. As various people have made criticisms—and they themselves have made criticisms of their own experiments—they improve the techniques so that the effects are smaller, and smaller, and smaller until they gradually disappear. All the parapsychologists are looking for some experiment that can be repeated—that you can do again and get the same effect—statistically, even. They run a million rats—no, it’s people this time—they do a lot of things and get a certain statistical effect. Next time they try it they don’t get it any more. And now you find a man saying that it is an irrelevant demand to expect a repeatable experiment. This is science?

This man also speaks about a new institution, in a talk in which he was resigning as Director of the Institute of Parapsychology. And, in telling people what to do next, he says that one of the things they have to do is be sure they only train students who have shown their ability to get PSI results to an acceptable extent—not to waste their time on those ambitious and interested students who get only chance results. It is very dangerous to have such a policy in teaching—to teach students only how to get certain results, rather than how to do an experiment with scientific integrity.

So I wish to you—I have no more time, so I have just one wish for you—the good luck to be somewhere where you are free to maintain the kind of integrity I have described, and where you do not feel forced by a need to maintain your position in the organization, or financial support, or so on, to lose your integrity. May you have that freedom. May I also give you one last bit of advice: Never say that you’ll give a talk unless you know clearly what you’re going to talk about and more or less what you’re going to say.

The Books That Influenced Stephen Jay Gould

Stephen Jay Gould
Stephen Jay Gould was one of the most influential and widely-read writers of popular science of his generation, but you’d never know it from the short reply he gave when asked which books influenced him the most. He left the why part out.

As found in The Harvard Guide to Influential Books: 113 Distinguished Harvard Professors Discuss the Books That Have Helped to Shape Their Thinking:

As a kid growing up in New York City, I played stickball and poker instead of doing a lot of reading. I wasn’t a nonreader — I read at an average age and an average rate. The passion for reading came later in college.

The Origin of Species by Charles Darwin
The Meaning of Evolution by George G. Simpson
Lucky to be a Yankee by Joe Di Maggio
Daniel Deronda by George Eliot
The Bible. King James version

Follow your curiosity, for more in this series check out the books that influenced E. O. Wilson, B. F. Skinner, Thomas C. Shelling, Michael J. Sandel, and Jerome Kagan

(image source: nyt)